If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+19x=88=0
We move all terms to the left:
x^2+19x-(88)=0
a = 1; b = 19; c = -88;
Δ = b2-4ac
Δ = 192-4·1·(-88)
Δ = 713
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{713}}{2*1}=\frac{-19-\sqrt{713}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{713}}{2*1}=\frac{-19+\sqrt{713}}{2} $
| 350/7=x | | 350/1=7x/1 | | 3-3y=3y+4 | | 2x-8x+2=9-10x | | 27=3(x+9) | | 7u+11=2u+11 | | 9r-6r=-18 | | (22b-2)-7(3b+3)=-4 | | 5+6b−8b=5b−2b | | 5(x+6)=-100 | | 2(12x+7)+9x-1=180 | | 8m+2=8m+16 | | 6+3(y+4)=22 | | 12+15w=18+13w | | 350=7x | | 0.4-0.3p=0.1(p+4) | | 2/5(n+12)=6+1/3n | | 4x=-26+6x | | k-310=72 | | 58x=232 | | 6x-(3x+2)+x-1=3x+(2x-1)+5 | | 6x+17=-2x-62 | | 8-3y=2y+12 | | -O.5r=-8 | | 10h+6=68 | | 2.6=j-9.9 | | t/58=-9 | | 3n+2=96 | | -8z-6+4z=1-3z | | 3/4x+12=9 | | q+236=413 | | 4.5+x=7.002 |